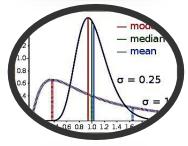

Analytics para área da saúde




## O que é Data Science?

É a utilização de metodologia científica aliada à ferramentas matemáticas, estatísticas e computacionais com o objetivo de solucionar problemas de negócios.





#### Matemática



**Estatística** 



Computação





WolframAlpha

























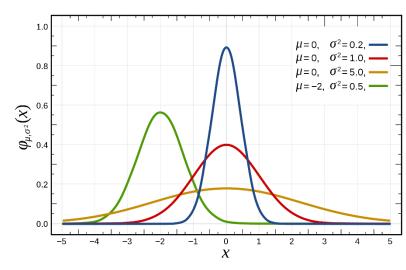






### O Primeiro Cientista de Dados da História?




### Carl Friedrich Gauss



Nascido na Alemanha em 1777 (faleceu em 1855), conhecido como o príncipe da matemática devido a seu precoce talento, desde os 3 anos quando aprendeu álgebra sozinho

### **Grandes Contribuições**

- \* Matemática (Álgebra, Geometria, cálculo,...)
- \* Física (Mecânica, Gravitação, Eletromagnetismo,...)
- \* Astronomia
- \* Estatística



Distribuição Gaussiana (Estatística)

#### Análise de Dados

Gauss foi o criador da regressão estatística de dados (método dos mínimos quadrados). Ele utilizou esta ferramenta matemática para criar um modelo de predição da posição de corpos celestes, e auxiliar navegadores em suas viagens, além do estudo das geodésicas e geometria. Mais tarde, este método se mostrou útil no estudo de correlações entre variáveis. Esta invenção de Gauss foi o embrião do que é hoje conhecido por Estatística. Tendo sido um primeiro modelo de otimização e aprendizado, que são hoje tópicos centrais em Ciência de Dados.

### Aplicações de Data Science





#### **Retail Analytics**

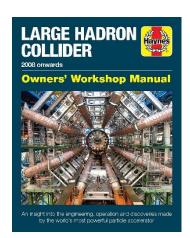
Insights sobre consumidores, logística, otimização de preços, planejamento de estoque, ofertas customizadas, etc.



#### Risco de Crédito

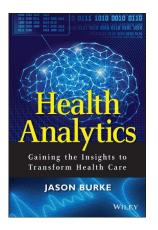
Score de crédito, ratings, grupos homogêneos, clusterização de perfis de clientes, modelos de collection, behavior, predição de calote, fraude, etc.




#### **Financial Analytics**

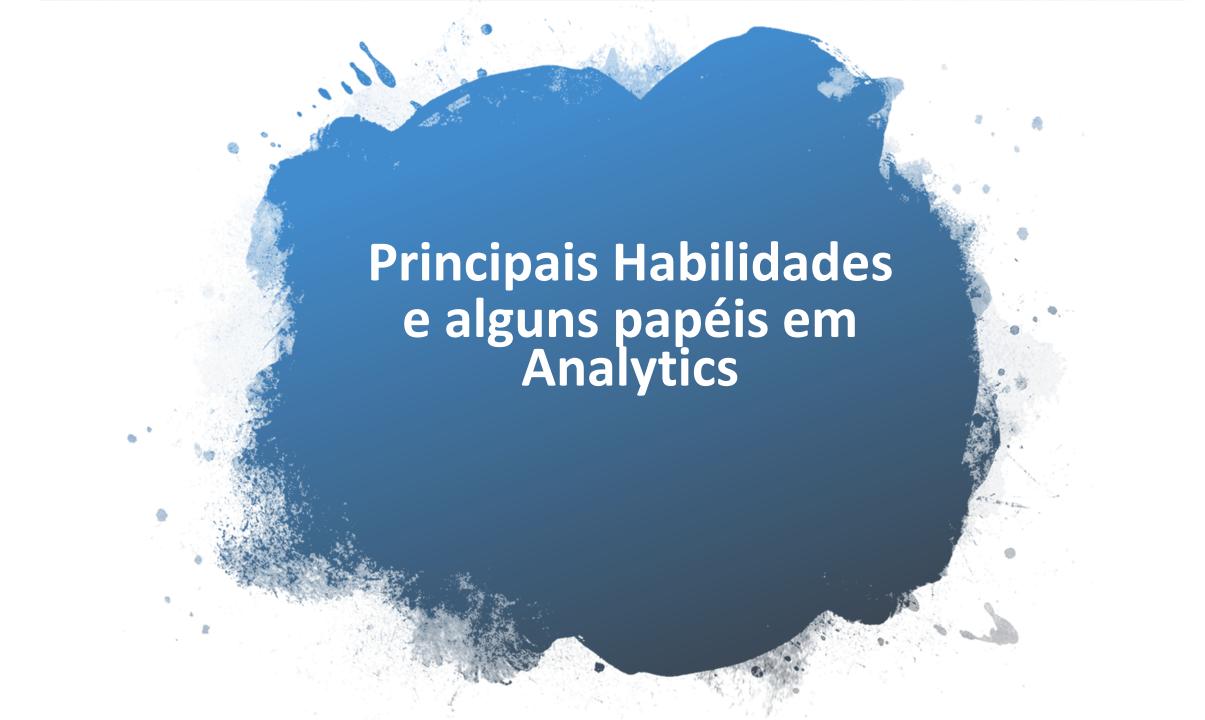
Modelos preditivos de valores de Ações, opções, índices, estruturados, commodities, fiduciários, colateral, custos, etc.




#### **Banking Analytics**

Analytics CRM, relatórios, P&L, insights e perfis de Analytics clientes, planejamento de resultados e metas, plan. numerário, agências, clientes e carteiras, ofertas contextualizadas.




#### **Big Data Analytics**

Análise de big data em projetos científicos, tomadas de decisão, descobertas e aprendizado de máquina, validação de resultados, organização, versionamento e debugging.



#### **Health Analytics**

Seguradoras, operadoras, saúde pública, diagnósticos, pesquisa acadêmica, melhoria em tratamentos, otimização de rede de atendimento.



### Principais Habilidades





Programming Language

Conhecer a lógica de programação, os algoritmos, sintaxe da linguagem e os paradigmas de computação.

(desenvolvimento, debug, documentação e etc)



Knowledge and Application

Conhecimento básico de Administração e Economia. Entendimento de processos e metodologias de análise. Raciocinio lógico e analitico e pensamento estratégico.

(Comunicação, Sagacidade, Oportunismo e etc)



Data Modeling Engineering

Conhecimento em estruturação de banco de dados. Entendimento de relação entre tabelas.

(Conexão com o banco de dados, Consultas nas tabelas, Otimização, Monitoramento e etc)



Data Visualization

Prática com software de visualização. Maneiras gráficas de apresentar as informações. Criação em dashboard simples e atrativas. Boas práticas de visualização.

(Storytelling, Apresentação executiva e etc)



Software Engineering

Conhecimento de aplicação e framework. Conhecimento de metodologias e ferramentas ágeis. Boas práticas de desenvolvimento e processos.

(Concepção, Especificação, Design Pattern, Documentação, Teste, debug e etc)



Data Intuition

Seleção de variáveis relevantes para o negócio, intuição sobre métricas, indicadores, números relevantes, variáveis, etc. Capacidade de validar e estimar números através de raciocínio indutivo.

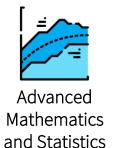
(Experiência, conhecimento técnico e teórico, criatividade e etc)

### Principais Habilidades





Digital Expertise


Entendimento relacionados em ambientes digitais (Mobile ou Web). Conhecimento de ferramentas (Google Ads, Tag Manager, SEO e outros).

(Tagueamento, Google Analytics e etc)



Data Wrangling

Conhecimento de métodos de transformação e manipulação de dados. Métodos estatísticos de complementação (Missing, outlier e outros). (Padronização, Normalização dos dados e etc)



Conhecimento de disciplinas avançadas de matemática e estatística. (Calculo, Algebra, Analise, Algoritmos e etc)



and Research

Métodos analíticos de soluções de problemas e tomadas de decisão na gestão empresarial. Utilização de matemática aplicada e computacional e análise estatística.

(Otimização, Econometria, Cadeias de Markov e etc.)



Communication

Comunicação verbal clara e objetiva. Sabe lidar com diferentes perfis. (soft skills, retórica, concisão, objetividade)



Conhecimento de programação distribuída. Conceitos relacionados a Big Data. Conhecimento de ferramentas de desenvolvimento do ecossistema. (5V, Spark, Hive, DataFactory e etc)

## Alguns papéis em analytics



#### **Web Analyst**

Trabalha no desenvolvimento, análise, interpretação, mapeamento e implantação de tecnologias digitais como google e adobe analytics.









#### **Engenheiro de Dados**

Arquitetura e construção do pipeline de dados, ingestão de fontes internas e externas de dados, modelagem dos dados, processos de ETL e automação de processos, integração de serviços cloud com outras tecnologias e API.









Big Data

**Analista de Negócios** 

Realiza acompanhamento executivo, conhecimento em análise e visualização de dados, apresentações executivas, alinhamentos, criação de métricas e indicadores de performance.









#### **Analista de Dados**

Análise de dados mais aprofundada, busca por insights e oportunidades de negócios através dos dados. Possuem aprofundamento técnico e específico moderado. Focado em análises descritivas e prescritivas.









Communication

Research

#### Cientista de Dados

Apoia o engenheiro a modelar os dados, auxilia o analista de negócios na definição de indicadores, e realiza análises avançadas (modelos matemáticos e estatísticos). Auxilia o desenvolvedor na implantar modelos.

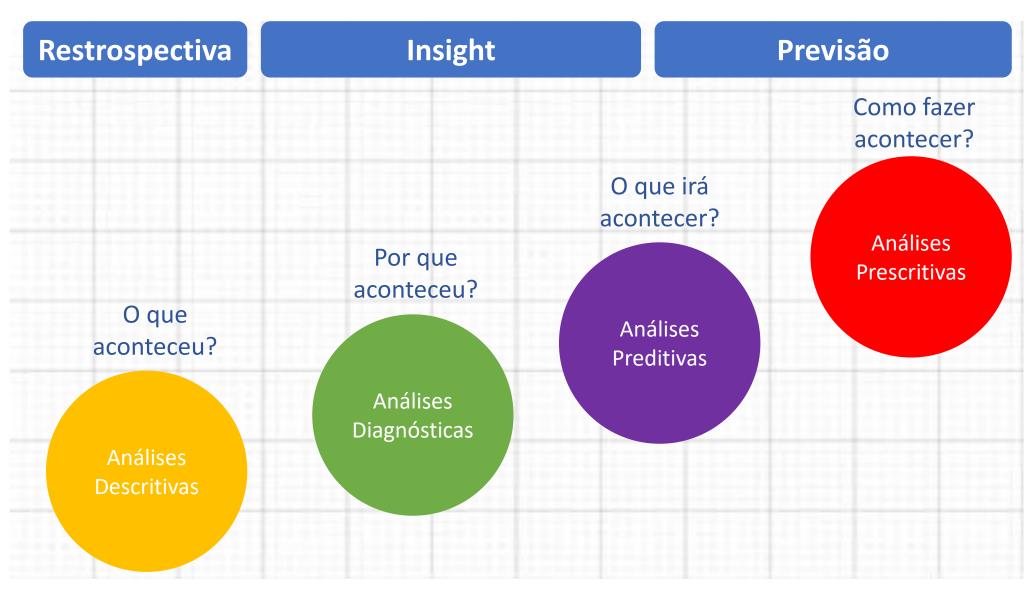















## Etapas no processo de análises



Valor ao Negócio



Complexidade

## Etapas no processo de análises





O que aconteceu?

Análises Diagnósticas

Por que aconteceu?

Análises Preditivas

O que irá acontecer?

Análises Prescritivas

Como fazer acontecer?

Investigação e
mapeamento dos dados,
sumarização de
resultados, criação de
painéis e apresentações
executivas

Investigação mais aprofundada dos dados com objetivo de criar insights e diagnósticos sobre os resultados ocorridos

Análise histórica dos dados para identificação de padrões e criar modelos preditivos sobre resultados futuros e automação de tomadas de decisão

Criação de modelos e métodos analíticos avançados para fazer recomendações específicas sobre estratégias de negócio

## Etapas no processo de análises





O que aconteceu?

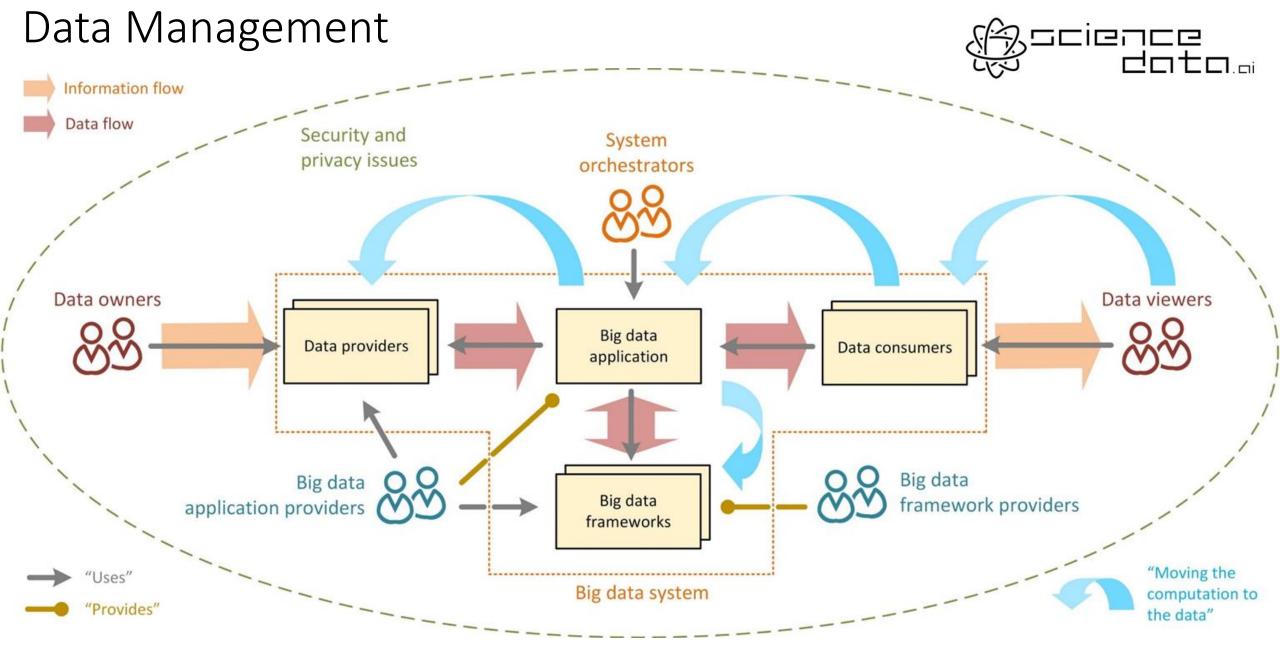
Análises Diagnósticas

Por que aconteceu?



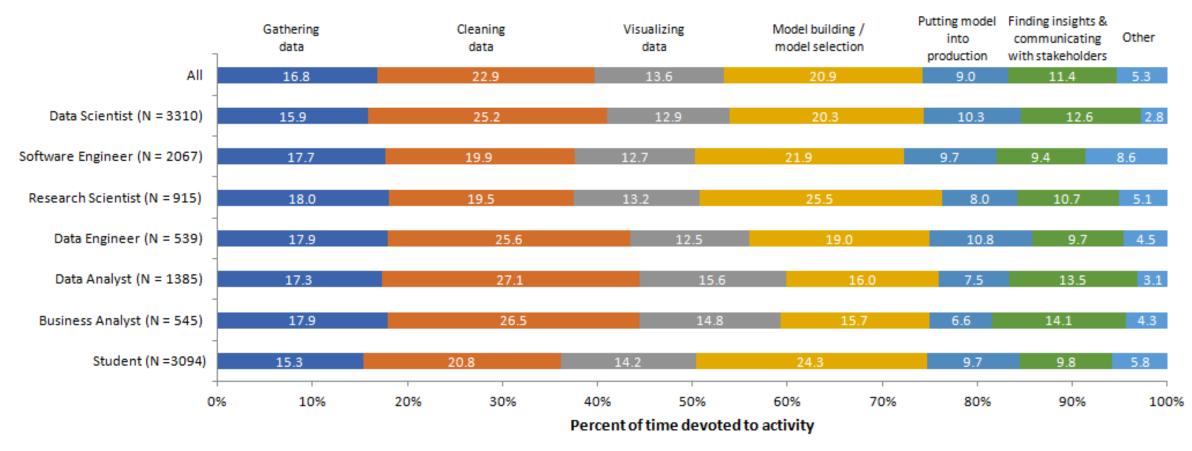
O que irá acontecer?




Como fazer acontecer?

- \* Estatística descritiva
- \* Data Mining
- \* Agregação de dados
- \* Cruzamento de bases
- \* Dashboards

- \* Estatística
- \* Probabilidade
- \* Séries temporais
- \* Análises de padrões


- \* Modelos estatísticos
- \* Modelos matemáticos
- \* Simulações
- \* Forecasting
- \* Machine Learning

- \* Otimização
- \* Machine Learning
- \* Deep Learning
- \* Redes Neurais

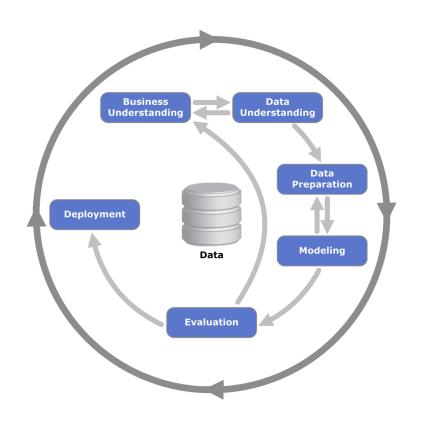


Fonte: <a href="https://towardsdatascience.com/everything-a-data-scientist-should-know-about-data-management-6877788c6a42">https://towardsdatascience.com/everything-a-data-scientist-should-know-about-data-management-6877788c6a42</a>

# During a typical data science project at work or school, approximately what proportion of your time is devoted to the following?



Note: Data are from the 2018 Kaggle ML and Data Science Survey. You can learn more about the study here: http://www.kaggle.com/kaggle/kaggle-survey-2018.

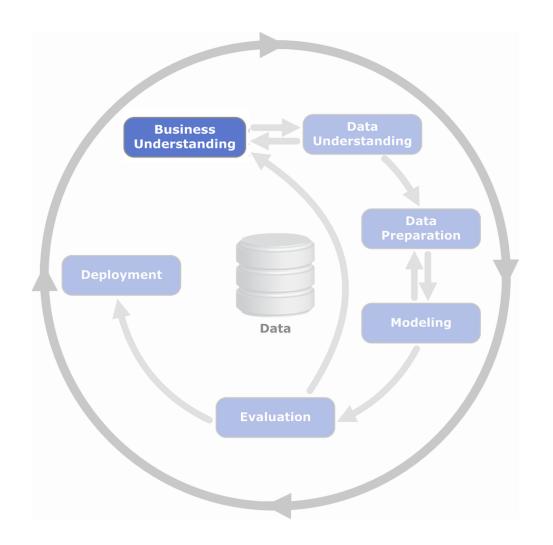

A total of 23859 respondents completed the survey; the percentages in the graph are based on a total of 15937 respondents who provided an answer to this question. Only selected job titles are presented.







# Metodologia: C.R.I.S.P-DM




- A metodologia CRISP-DM\* surgiu para apoiar os projetos relacionados com o processamento e a análise de grande volumes de dados.
- A CRISP-DM reúne as melhores práticas para que o processo seja mais produtivo e eficiente.

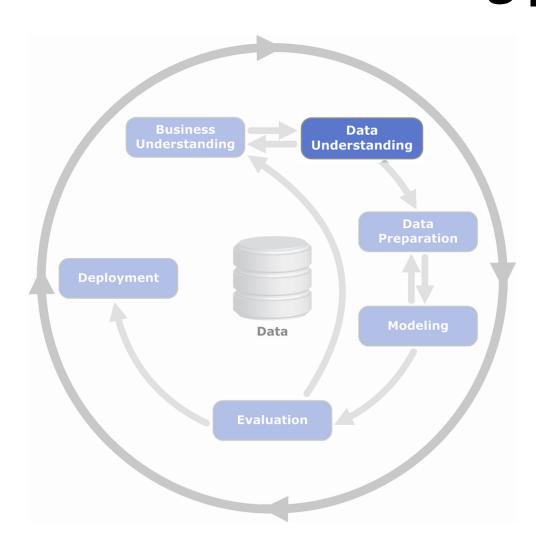
<sup>\*</sup> Cross Industry Standard Process for Data Mining



# Business Understanding | Entendendo de Negócios



Fase do entendimento das perguntas de negócio/KPIs/ Performance Indicator/Índices de Monitoramento. Alinhamento dos critérios que serão utilizados no levantamento dos dados.


Definição da "espinha dorsal" do projeto, com planos e metas inicias que darão o direcionamento dos próximos passos.

Mapeamento dos principais resultados já apresentados e projetos implantados pelas áreas de negócio.

Definição dos principais problemas de negócio a serem solucionados. Importante focar nos principais e ter uma lista reduzida com alta prioridade.

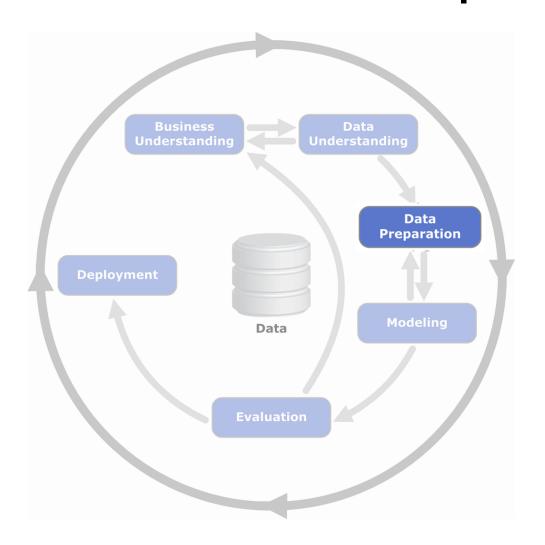


# Data Understanding | Entendendo os Dados



Mapeamento dos dados já ingeridos, em produção e em "sistemas manuais" (bases acess, planilhas excel, etc.), data lakes, bancos de dados, etc.

Levantamento dos dados para as perguntas de negócio a serem respondidas. Definição das fontes de dados a serem acessadas.


Avaliação qualitativa dos dados: consistência, integridade, qualidade, problemas estruturais de bases (dados missing, incompletos, nulos, etc.)

Análises primárias (descritiva) e investigações iniciais.

Primeiro checkpoint com PO: apresentação do descritivo e levantamentos iniciais de respostas.

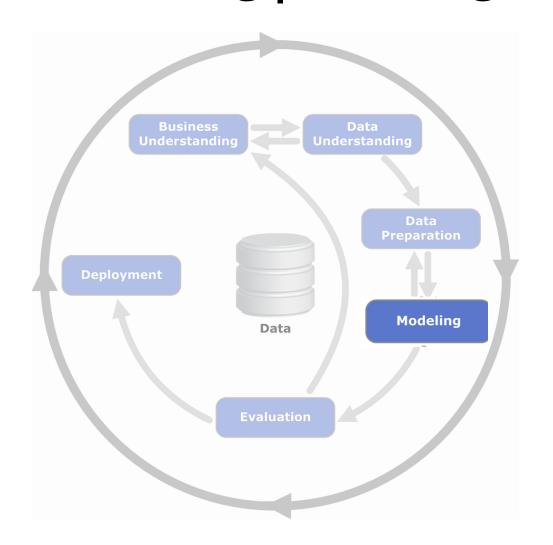


# Data Preparation | Preparação dos Dados



Preparação dos procedimentos de bases e seus relacionamentos. Aplicação dos critérios definidos nas etapas anteriores.

**Seleção:** escolha das variáveis resposta, variáveis independentes, métricas.


**Limpeza:** Formatação, padronização e normalização dos dados, tratamentos de dados nulos, faltantes, outliers. Criação de regras de contingenciamento.

**Construção:** Criação de métricas, indicadores, variáveis auxiliares, flags, etc.

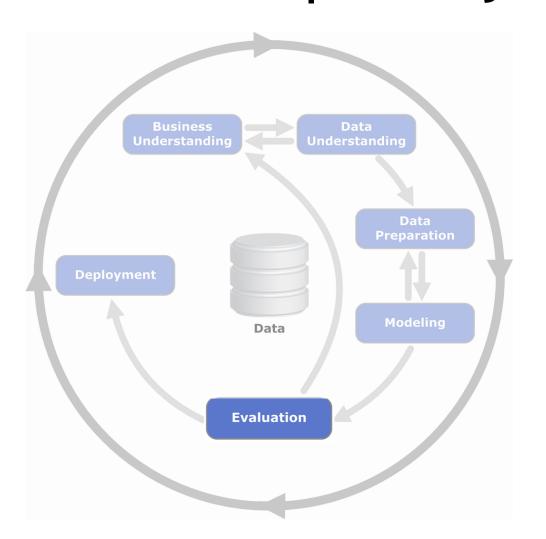
**Integração:** Criação dos esquemas de relacionamento entre as bases e suas chaves.



# Modeling | Modelagem



Definição das técnicas em analytics que serão utilizadas na obtenção de respostas e possíveis modelos que possam ser utilizados.


Os modelos podem ser **preditivos** (automação de decisões ou regras de negócios para tomadas de decisão.), ou **prescritivos** nos quais algoritmos de aprendizado de máquina são utilizadas para transformar inputs de negócio em respostas à estas perguntas

Separar bases em desenvolvimento e teste. Possíveis bases amostrais e sintéticas. Desenvolvimento dos modelos selecionados. Testes de robustez e performance dos modelos.

Último checkpoint do ciclo com PO antes da validação

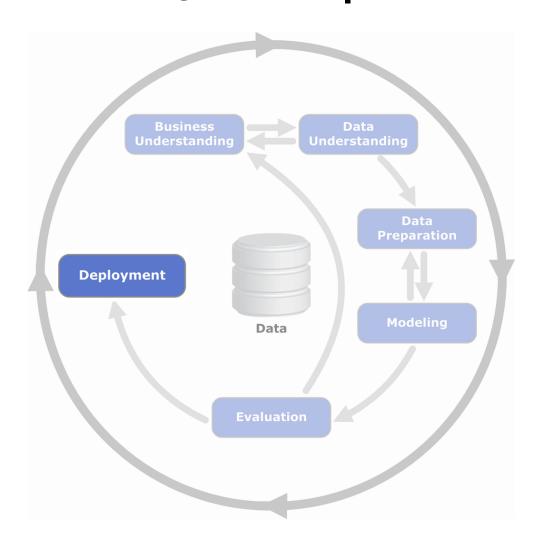


# **Evaluation | Validação**



Validação apartada das metodologias aplicadas e resultados. Testes de robustez, consistência, integridade, coerência e eficiência do modelo.

Validação apartada das regras de contingenciamento aplicadas no modelo. Verificação do perfil da base em contingenciamento.


Teste de stress do modelo para performance em cenários extremos e inesperados.

Backtest do modelo (performance fora da amostra e tempo).

Último checkpoint com PO.



# Deployment | Implantação



Etapa de desenvolvimento e implantação dos modelos para serem colocados em produção.

Criação de dashboards para acompanhamento dos KPI de negócio e performance do modelo

Implantação dos algoritmos de contingência para tratamento de grupos de risco, outliers e riscos pouco prováveis

Implantação de "circuit breaker" para os casos de risco improváveis e raros (grande impacto de negócio)



## Objetivo de Visualização de Dados



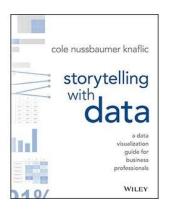


Comunicação rápida e eficiente, demonstrando resultados de forma visual e resumida.



Dashboards de acompanhamento de indicadores de performance. Visualização rápida e online de resultados.



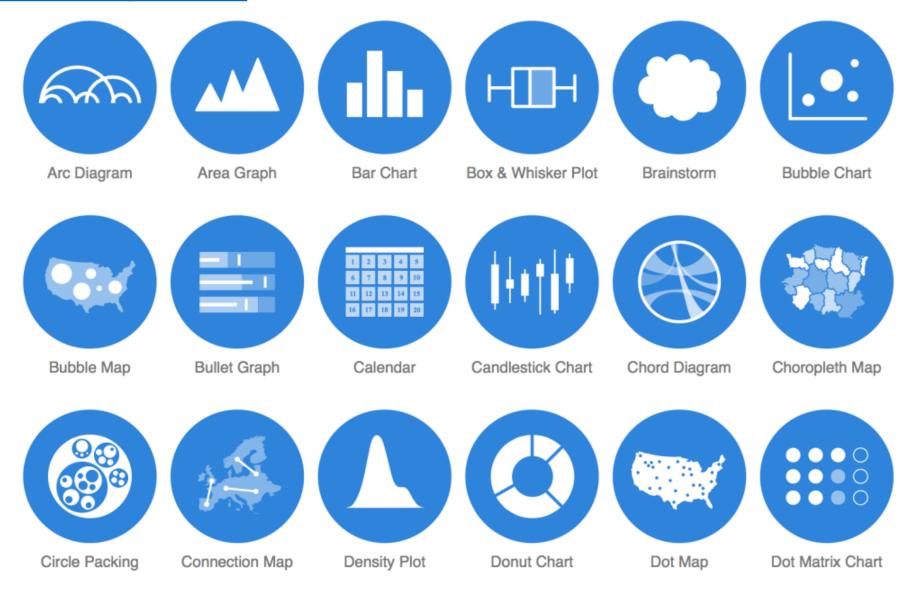

Apresentações executivas com dados e gráficos são maneiras eficientes de formalizar tomadas de decisão e documentar insights.



Gráficos são maneiras eficientes de se analisar dados e encontrar insights e resultados e documentar os processos de descoberta.



Visualização de dados é uma arte. Gráficos bonitos e visualizações agradáveis atraem muito mais a atenção do público.




Gráficos ajudam a contar uma história. A maioria das pessoas são visuais e precisam desse apoio para entender o conteúdo exposto.

## Catálogo de Gráficos



#### https://datavizcatalogue.com/



### Processo de storytelling a partir de dados





Entenda bem o contexto de seus dados. Quais as perguntas de negócio e hipóteses a serem testadas

Escolha maneiras apropriadas de visualizar seus dados, utilizando displays dinâmicos e atraentes Elimine das
visualizações
aquelas
informações
que não forem
essenciais

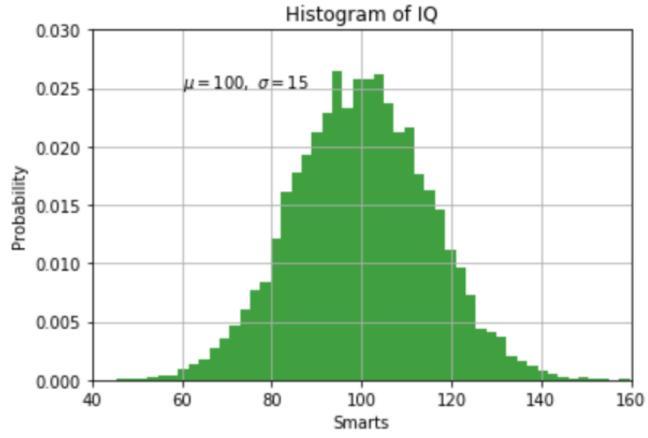
Seja estratégico, atraia a atenção do seu público para os pontos que você considera como sendo os mais importantes

Pense como um designer e enxergue a experiência do usuário.

Conte uma história interessante

### Histogramas




```
import numpy as np import matplotlib.pyplot as plt
```

```
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
```

```
# the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g',
alpha=0.75)
```

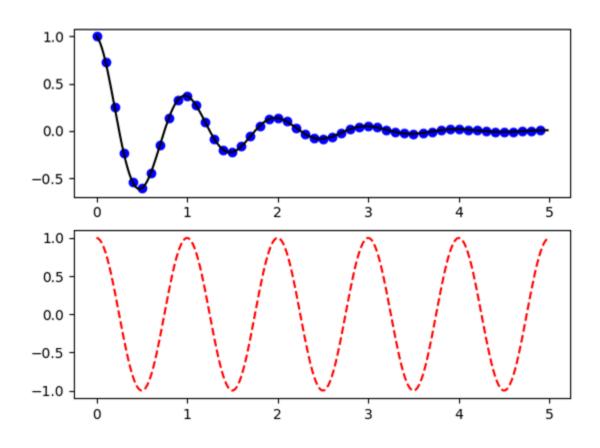
```
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()
```





Histogramas são utilizados para visualizar como a frequência de valores de uma variável é distribuída por faixas. Abaixo o gráfico resultante do código ao lado.

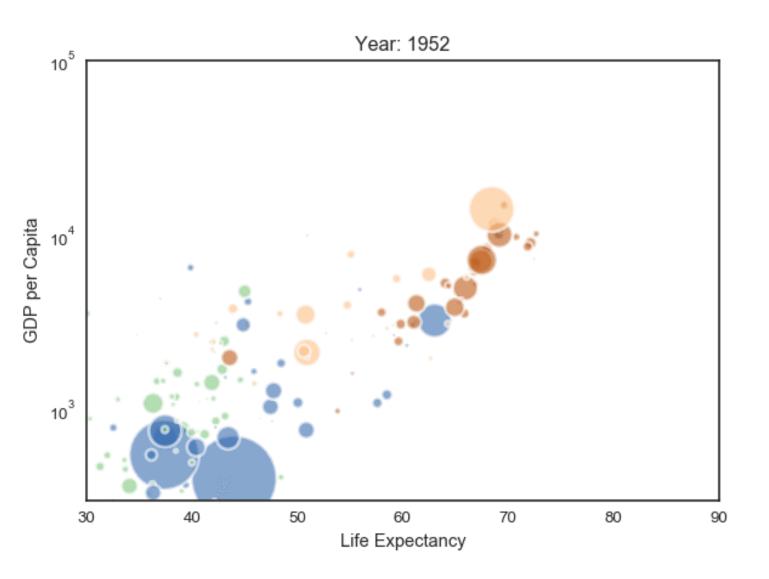
## Gráficos de Funções Matemáticas




```
def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

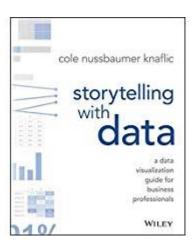

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()
```

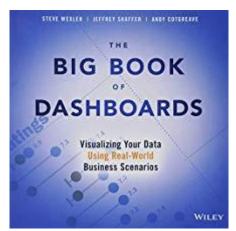


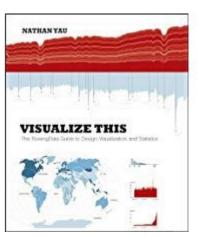
Algumas métricas são funções de outras variáveis. Gráficos de funções são importantes na visualização de como essas variáveis se comportam uma em relação a outra.

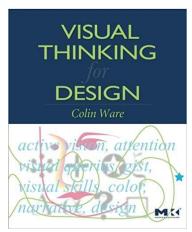
## Gráficos de Bolha (dinâmicos)

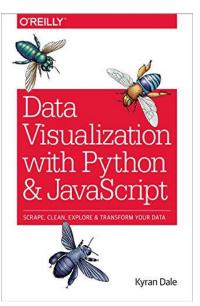






Gráficos animados são uma maneira didática e lúdica de demonstrar como variáveis evoluem ao longo do tempo e espaço (análise multivariada).


Além dos eixos ortogonais tradicionais que representam funções entre as variáveis, o tamanho, cores e formatos dos pontos podem representar mais variáveis, e a movimentação destes pontos pode representar como estas variáveis evoluem ao longo de um período de tempo.


### Referências


- \* <a href="https://python-graph-gallery.com">https://python-graph-gallery.com</a>
- \* <a href="https://plot.ly/python/">https://plot.ly/python/</a>
- \* <a href="https://datavizcatalogue.com/">https://datavizcatalogue.com/</a>
- \* <a href="https://matplotlib.org/tutorials/introductory/pyplot.html">https://matplotlib.org/tutorials/introductory/pyplot.html</a>
- \* <a href="https://pandas.pydata.org/pandas-docs/stable/">https://pandas.pydata.org/pandas-docs/stable/</a>
- \* <a href="https://matplotlib.org/">https://matplotlib.org/</a>
- \* <a href="https://seaborn.pydata.org/">https://seaborn.pydata.org/</a>
- \* https://pbpython.com/visualization-tools-1.html
- \* <a href="https://www.dataquest.io/blog/python-data-visualization-libraries/">https://www.dataquest.io/blog/python-data-visualization-libraries/</a>
- \* <a href="https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed">https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed</a>









